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MORSE-BOTT THEORETICAL SETTING FOR THE SEIBERG-WITTEN
4-DIM THEORY
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Let (X, g) be a closed, smooth riemannian 4-manifold. For any fixed spin® structures a on
X, the Seiberg-Witten functional
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satisfies the Palais-Smale condition. There are two classes of critical points for the SWo-
functional (i) irreducibles: (4,4), ¢ # 0, (ii) reducibles: (A,0). For the purpose of studying
smooth invariants on X, it only matters the existence of irreducible stable critical points of SWq
(SWe-monopoles) which exist only for a finite set of spin® classes named basic classes. If the
scalar curvature satisfies k; > 0, then there is no irreducible critical points. The motivation to
set up the SW,-functional in a Morse-Bott theoretical framework is to understand the existence
of SW-monopoles from a analytical point of view, since in the presence of a SW,-monopole the
Morse-Bott index of the reducibles is greater than 0 . In order to achieve transversality condi-
tions, the following perturbation of the Seiberg-Witten functional is considered: let 1 be a closed,
smooth self-dual 2-form;
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It is shown that for a large set of self-dual closed 2-forms 1, the SWZ functional fits into a Morse-
Bott framework. The reducibles critical points define a critical set diffeomorphic to the jacobian
torus Jx = H'(X,R)/H(X,Z). The 2" variation formula (hessian) of SWq is obtained and
the Morse-Bott index of reducible solutions (A,0) is shown to be the dimension of the largest
negative eigenspace of the elliptic linear operator Ly = Da+ ’-ff- + 7, hence is finite. Moreover,
for a large set of self-dual closed 2-forms 7, it is shown that the hessian’s null space is exactly the
tangent space to Jx. In [1], they prove the gradient flow lines always converge t0 & critical point
allowing to define a sort of Floer Complex. By using the blow-up ideas of Kronheimer-Mrowka
in [2], it is possible to define Floer Homology Groups HF(X;a), HF(X:a) and HF(X;a).
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